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A new linear MHD stability code, NOVA-W, has been developed in
order to study feedback stabilization of the axisymmetric mode in defor-
mable tokamak plasmas. The NOVA-W code is a modification of the
non-variational MHD stability code NOVA that includes the effects of
resistive passive conductors and active feedback circuits. The vacuum
calculation has been reformulated in terms of the perturbed poloidal
flux to atlow the inclusion of perturbed toroidal currents outside the
plasma. The boundary condition at the plasma—vacuum interface relates
the instability displacement to the perturbed poloidal flux. This allows
a solution of the linear MHD stability equations with the feedback
effects included. The passive stability predictions of the code have been
tested both against a simplified analytic model and against a different
numerical calculation for a realistic tokamak configuration. The
caormparisons demonstrate the accuracy of the NOVA-W results. Active
feedback calculations are performed for the CIT tokamak design
demonstrating the effect of varying the position of the flux loops that
provide the measurements of vertical displacement. The results
compare well with those computed earlier using a less efficient
nonlinear code.  © 1993 Academic Press, Inc.

1. INTRODUCTION

It is now known that by increasing the total plasma
current in a tokamak, one can increase both the maximum
stable # [2] and the energy confinement time 7 [3]. One
way of increasing the total plasma current carrying
capability of the tokamak without degrading the non-
axisymmetric MHD stability is to modify the cross-
sectional shape of the plasma by increasing its elongation
and triangularity [4,5). Even further cross-sectional
shaping such as indentation to produce a bean-shaped
plasma may lead to even larger stable values of § by
providing access to a second regime of stability against
baliooning modes [6, 7].

Tokamak plasmas with strong cross-sectional shaping,
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however, are subject to severe axisymmetric (rn=20)
instabilitics that can destroy the plasma on the ideal MHD
time scale [8-15]. The axisymmetric instability involves
gross vertical plasma motion on the ideal MHD time scale.
This results in the sudden termination of the tokamak
discharge as the plasma comes into contact with the
surrounding vacuum vessel structure. Such a disruption of
the plasma discharge causes rapid quenching of the plasma
current, which will induce large currents in the tokamak
vacuum vessel and support structure, which will in turn
produce large, potentially damaging forces.

These modes can be stabilized by placing a conducting
wall around the plasma. The mode remains unstable when
there is finite conductivity in the wall [16], but the growth
rate 1s reduced from the ideal MHD time scale to the L/R
time of the surrounding conductors [17, 18]. This time
scale is much shorter than the length of the discharge in
modern tokamak experiments but is long enough to be
amenable to feedback stabilization using practical power
supplies. Thus, an active feedback system is needed to
further stabilize the plasma over the time of the discharge
{19, 20].

The efficacy of the feedback control is highly dependent
on the details of the active feedback system, the placement
of the passive conductors, and the behavior of the plasma
itself. In the past, the stabilizing properties of these feedback
systems have been analyzed using simplified models that
treat the plasma as a collection of filamentary currents, or as
having purely rigid motion [ 20, 21]. Variational techniques
have been used [227), but these still rely on the choice
of a specified trial function, which might not be a good
representation because plasmas with strong cross-sectional
shaping can have large nonrigid components to their
displacements [23]. In fact, it has been shown [24] that
plasmas with strong cross-sectional shaping can remain
unstable under the effects of a feedback system that would
stabilize a plasma that undergoes only rigid motion.

The full nonlinear motion of a tokamak plasma can be
simulated by a time-evolution code such as the Tokamak
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Simulation Code (TSC) [251. While TSC can provide an
accurate treatment of both the linear and the nonlinear
axisymmetric motion, obtaining an accurately converged
result requires an excessive amount of computation. Thus to
completely explore the performance of a feedback system
using TSC is difficult and expensive. Also, the results of such
simulations will not clearly demonstrate how the unstable
- motion of the plasma might deform with respect to
* variations in the feedback system.

Whereas analytical techniques have been used to ﬁnd
growth rates for axisymmetric moedes in simple geometries
with thin resistive walls [18, 22], a linear computational
treatment capable of analyzing general geometries has not
previously been available. One difficulty is that a realistic
active feedback system will not satisfy the self-adjointness
properties of the force operator. Therefore, ideal MHD
stability codes such as PEST [26] or ERATO [27] cannot
easily be modified to treat these non-ideal aspects, since
that would destroy the self-adjointness property that is
fundamental to their formulation. One is therefore limited
to studying configurations with no feedback system and a
perfectly conducting wall.

We describe here a non-ideal MHD stability -code,
NOVA-W, that calculates the linear stability of axisym-
metri¢c modes in general geometry with passive and active
feedback included. To develop NOVA-W we have modified
the vacuum calculation of the NOVA code [1] to include
the effects of resistive conductors and feedback currents
in the vacuum region. NOVA is non-variational MHD
stability code that directly solves the stability eigenvalue
equations without using the ¥ formulation. It can there-
fore be modified to include non-ideal effects that would
otherwise destroy the sclf-adjointness property, which
underlies the W approach. The NOVA-W code is par-
ticularly well suited for examining the effects of active and
passive feedback on the vertical instability in tokamaks with
regard to the influence of the non-rigid components of the
motion.

In the following section the formulation of the vacuum
calculation is presented, as well as a review of the linear
MHD stability equations that underlie the NOVA formula-
tion. Resistive conductors in the vacuum region and an
active feedback system are added to the formulation. In
Section 3 the numerical method of the NOVA-W calculation
is described for passive growth rates and active feedback
stabilization. Section 4 presents results for passive stabiliza-
tion studies. The code results are compared with an anaiytic
model for a simplified configuration and with a different
numerical calculation for a realistic tokamak equilibrium,
The comparison is found to be excellent. In Section 5 we
present results for an active feedback calculation. The
results are found to compare well with results of a similar
study performed using TSC [28]. Finally, in Section 6 we
summarize our principal results.
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2. FORMULATION

The NOVA stability code solves the inear MHD stability
eigenvalue equations

p?E=Vp, +bx (VxB)+Bx (Vxb) (1)
pi+E-VP+yPV.-E=0, 2)

where
b=Vx (£xB) (3)

is the perturbed magnetic field in the plasma, B is the
equilibrium magnetic field, p, and P are the perturbed and
equilibrium particle pressures, p is the plasma mass density,
y=23 is the ratio of specific heats, £ is the displacement
vector, and « is the eigenvalue (normalized growth rate).
The equations are solved directly, without using variational
techniques. The equilibrium magnetic field is represented by

B=V{x Vi +q(y) Vi xVO 4)

or
B=V¢xVy + g() V¢, (5)

where 2mis is the poloidal flux contained within a surface,
© is the generalized poloidal angle, { is the generalized
toroidal angle, ¢ is the standard toroidal angle from
(X, ¢, Z) cylindrical coordinates, ¢(\f) is the safety factor,
and g(y} is the toroidal field function. The second definition
for B, Eq. (5), follows for an axisymmetric equilibrium. The
generalized angle coordinates (@, {) are chosen to make the
magnetic field lines appear straight in this coordinate
system.

Equations (1)-(3) can be shown to reduce to a single
matrix equation,

P, P,
\E V( ) C( )+D E-'. F( ) (6)
&y Ey £y
where P is the total perturbed pressure, P, = p, +b - B, and

C, D, E, and F are matrix operators involving surface
derivatives B-V and (BxVy}-V. These matrices are
defined in the original NOVA paper [1].

This matrix equation (6} is essentially a pair of coupled
first-order (in ¥) differential equations for £, and P,. In
order for NOVA to solve this differential equation, the
proper boundary condition at the plasma-vacuum interface
must be provided. This boundary condition must relate P,
to ¢, at the boundary.
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2.1. Poloidal Flux Formulation

We consider the geometry shown in Fig. 1. The plasma is
surrounded by a vacuum region which is itself divided into
two parts, Region I and Region 11, by a thin resistive wall.
Flux-loop sensors, poloidal magnetic field detectors, and
active feedback coils may exist in either region. We are
restricting consideration to axisymmetric modes. This
enables us to use the axisymmetric flux formulation to
represent the perturbed magpetic field in each vacuum
region; thus

1
——VpxV, .
o dxVy+a, Vg (7N

Here y is the perturbed poloidai flux and a, is related to the
perturbed toroidal field.

The perturbed currents in the vacuum region are
restricted to be the toroidal currents generated by the
feedback system in the active feedback coils. Ampere’s law
therefore gives us

Vx":#OjA.F.‘;;’ (8)

where ¢ =V@/|Vé| = XV is a unit vector in the toroidal
direction. From this and from Eq. (7), we find that

da, _da,
-aE 20 =0 (2)

Therefore a, must be equal to a constant in each vacuum
region.

feedback coll
-/
Region 1
fwt-loop Resistive Wall
detectors
) Z
L X
EX feedback coil
% a
FIG. 1. Plasma and resistive wall, showing definitions of Regions [

and IL. The active feedback coils are outside the resistive wall in Region 1L
The flux-toop detectors are within the resistive wall in Region I {Case A
derived in Section 2.3.1). They can also be placed in Region II {Case B
derived in Section 1 of the Appendix).
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The perturbed poloidal flux y is related to the perturbed
toroidal currents in the vacuum region:

1 ,
AV. (F V)C) =27 jar. (10}

where we use the standard (X, ¢, Z) cylindrical coordinates.
The current density in the active feedback coils is repre-
sented by

N
Jar= 2 1, 0(r—1,).

i=1

(11)

Here, the [, arc the perturbed currents in axisymmetric
coils that are part of an active feedback system in the
vacuum region located at r,= (X}, Z;}. The sum is over all
the feedback coils.

We solve Eq. (10) using Green’s function techniques. The
corresponding Green’s function G(r; r) is defined by

1 4
V- VG(Xy, Zy: X5, Zsy=— 8(Xs~ X7) 8(Zs~ Zy)
(12)
The solution that vanishes at infinity is given by
. . TXS’ 1
Glrg;rp)=G(Xq, Z4; X, Z5)=4n Plpw),
where
w=X24 X2+ (Zs—Z, )
r=[(Xs—= X3P+ (Zs—Z) ' + AX 5+ XTHZs—Z,)°]

and where P, is the associated Legendre polynomial of
order ; (also known as a toroidal function or ring function)
which can be expressed in terms of compiete elliptic
integrals [297].

By integrating Eqgs. (10) and (12) over the volume of each
vacuum region, a Green's equation is found that relates the
perturbed vacuum flux to the currents in the vacuum region
and to an integral over the boundary surfaces. Thus when
the observation point £ is on the contour, and the principal
part definition of the line integral is used, we have

z(r) = 2 toL,G(r;1))

i=1

+ 236 7 DG )~ Gl Vard, (1)

where V, y is shorthand for i - Vy. We define the feedback
coil currents as the feedback gain multiplied by some
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measure of the vertical displacement of the plasma.
Magnetics measurements are most often used, and in par-
ticular the flux difference between up—down symmetric
points gives a simple measurement of vertical displacement.
For a symmetric equilibrium that undergoes fairly rigid
motion, this gives a good measurement of vertical displace-
ment. Therefore the desired feedback coil currents are given
by

[mzam[x(Xols Za!)_x(XOZ! Za2)]

+|Bm|:x‘(XolsZal)__Z(XobZoz)]’ (14)
where «,, 15 the proportional feedback gain, f,, is the
derivative feedback gain, and 7 is the time derivative of the
perturbed flux. However, any combination of magnetics
measurements can be used to define the feedback currents.
For example, poloidal magnetic field measurements are
sometimes also included as part of the signal for the feed-
back system [30]. Components of the perturbed magnetic
field can be included in the feedback law, Egq. (14), by
substituting Eq. (13} into Eq. (7).

The integrals in Eq. (13} are over the surfaces that are the
boundaries to the vacuum region, i.e., the plasma-vacoum
surface and the surface of the resistive wall surrounding the
plasma. We take the principal part of the integral over the
contour that is the interface or wall for a poloidal cross
section of the torus. The incremental arc length &/ on the
contour s given by

_F Iy
dl =2 do, (15)
where the Jacobian ¢ is defined by
F ' =VixVe V(. (16)

Separate Green's equations are obtained for vacuum
Region 1 (between the plasma and the resistive wall—see
Fig. 1), and for Region H (outside the resistive wall}. By
discretizing the quantities on the surface into a finite grid,
the contour integrals in Eq. (13) are expressed as sums over
the grid points on the surface. The collocation method [31]
is used to solve the integral equations. Equation (13) is
written M times, where M g is the number of grid points on
the plasma surface and wall surface, with every grid point
on the surface serving once as the observation point
r = (X, Z). This series of equations can be combined into a
single matrix equation in which the integrals are expressed
as matrices multiplying column vectors x,, V,x,, x,. and
V..., which contain the values of the perturbed flux and its
normal derivative at every collocation point on the plasma
surface and wall surface, respectively. A total of three matrix
equations result, corresponding to the number of surfaces
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that are boundaries to the two regions. The Green’s equa-
tions in matrix form for a configuration with feedback coils
present in Region II, outside the resistive wall, are

(l + Mpp) “X» + Mpw “Kw

=G, Vit +Gp - Vit (17}
M., %, +(1+M,,} x.
=G, Vaitp+ G Vil (18)
(T+M)-xw
=G V., +P, 1.
+N.- Vo, +P, -, + N, -V, 7, (19)

Here the matrices M and G are defined such that the ith
components of the matrix—vector products are given by

M-y, = _%?@

r

di, . L
Z (ll 'VG(rp; l'",)) X(rp): (20)

1 od,
2nl, X,

G;W'.VHXM': G(rw; r;)(ﬁ°vx(rw))! (21)

and so on, with the definitions for the other matrices follow-
ing the subscripts. The identity matrix is expressed by 1, and
the normal vector is defined by & = Vi/|Vi|. Also, r is the
ith point on the plasma—-vacuum surface, and r’, is the ith
point of the wall. The “+” superscripts denote quantities on
the outer surface of the thin resistive wall {Region 11). The
w subscript without the *+7 superscript denotes the inner
surface of the wall (Region 1), and the p subscript denotes
the plasma surface. The integrals arc over the plasma or
wall contours. The matrix Green’s equations (17)}-{18) are
the Green's equations for Region L The final equation,
Eq. (19}, is that for Region I1.

By using the thin—wall approximation, we get an
expression that relates the jump in the normal derivative
across the thin resistive wall boundary to the time derivative
of the flux on the boundary,

. b

[(6-Vx)] = —twuoaxu;wa, (22)
where [ ] denotes the jump across the thin resistive wall, &
is the thickness, and » is the resistivity of the wall. This rela-
tion can be derived directly from Maxwall’s equations, and
it can also be found by taking the Green’s equation for the
resistive wall region in the limit as the wall thickness goes to
zero. By using a variable jump coefficient K(@)} at the
various theta points we can simulate a wall with variable
thickness and material resistivity, and even a wall with
toroidally axisymmetric gaps. The thin-wall approximation
also implies that the poloidal flux is continuous across the
wall: y 7 = x,.-
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The matrices P and N contain the effects of the active
feedback system. The forms of the feedback matrices P and
N are quite different depending on whether the observation
flux loops controlling the feedback system are in Region |
or Region 1T (see Fig. 1). Since the active feedback currents
are a linear function of the perturbed flux at the observation
points, they can, after some algebra, be expressed in terms
of matrix relations involving y and V,y on the wall and
plasma surfaces,

Consider the case with a resistive wall and no active feed-
back system, so that the matrices P and N in Eq. (19)
vanish. Equations (17)-(19) may be solved to obtain V, x,,
in terms of y,. First x,, is eliminated in favor of V,y,, in
Eq. (19), using Eg. (22). Then from Eq. (18) V, x, is
calculated in terms of y, and V, x,. Finally Eq. (17} gives
V,.x, in terms of y,. Therefore we find that

V., =E 1Dy, (23)
where
E=G,-C-B™'-G,,
D=(1+M,)-C-B'-M,,
C=G,,+M, -A""-G,, (24)

B= wa+ (1 + Mww) ! Au] ' wa
A=(1-M, . +KG,,)

For the case with active feedback the procedure is essen-
tially the same, but then the feedback matrices must be
included in the definitions for matrices A through D.

2.2. Boundary Conditions at the Plasma—Vacuum Interface

The necessary boundary condition for Eq. (6) requires
that we provide P, in terms of £, at the plasma-vacuum
boundary. The perturbed pressure P, at the plasma—
vacuum interface is found in terms of the normal derivative
of the flux at the boundary,

\Y)
pl=B.b=(v¢xw)-(wx2—§)+g(w.,dge)w-a,w

VY| !

=ﬁ5vnx+alg(¢{edgn)_Xuiﬁ (25)

where g, is the value of  at the plasma—vacuum
boundary.

In order to evaluate this expression for P, in terms of £,
we relate the perturbed vacuum magnetic field to the plasma
perturbed field at the interface. Recall Eq. (7):

b=—1—V¢xVx+a,V¢.
2n
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Since b=V xd0A we can find /A,

1 o7 0z
A= —%xv¢+a, lnX[%VIIJ+@V9j|+VF, (26)

where F is some arbitrary scalar function. From Eq. (3) we
can compute the form of 3 A on the plasma surface:

dA=ExB. (27)
Equating Eqs. (26) and (27) and taking the projection
along V¢, we find

1
Vp-ExB= =z V4’ (28)

or

1
§o=8-Vy =2 ¢, exp(im@)= —5—y. (29)

This, together with Eq. (23), gives the required relation
between the normal derivative of the perturbed poloidal flux
V,r at the interface and the Fourier modes of the displace-
ment &,,. Therefore we need calculate only the toroidal
perturbation g, to complete the vacuum calculation.

To find a,, we first substitute the definition for b in the
vacuum, Eq. (7), into Faraday’s law, then take the toroidal
projection of this equation and integrate over the surface
defined by a plane at constant ¢ between the plasma and the
conducting wall. This gives

~1‘w(j§%dS= _SEWaE-dl—ﬂgpaE.dl (30)

or

of,

L, —
" ot

+R I, =(R,—iwL)1,= -35 SE.dl, (31)
P

where I, =2ma,/u, is the poloidal current induced in the
surrounding wall owing to the toroidal part of the magnetic
field perturbation b, L,. =y, | d5/2nX is the corresponding
self-inductance term, R,, is the poloidal resistance of the
resistive wall.

We determine [,., and hence a,, from this “circuit”
equation. We evaluate the integral on the right-hand side
of Eq. (31), using Egs. (5), (27), and (29), thus

fﬂﬁ 5E-d1=fm§(ax3)-fd1

- g (Vesg) T & § T3 ex0(m0) 40 (32)

where  is the surface unit tangent vector 7 = ¢ x .
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It is interesting to note that if one is using PEST [26]
coordinates (¢ = X?), then only the m=0 term will con-
tribute to the sum (corresponding to a pure compression of
the plasma cross section). Completing the circuit equation
{31) and solving for I, yields an expression for a,,

— ity 8(Y eage)

— ©)de, (33
= 27{(R *ICE)L )ZC J.O Xzexp(lm ) ( )
where the poloidal resistance R, is given by Ohm’s law to
be

n dl

Re=% 5w

(34)

It is also interesting to note that the result we obtain for a,
in Eq. {33) in the limit of a perfectly conducting wall
(R,.=0) is the same result obtained using the method of
Liist and Martenson [32]. The expression that we derive
for the resistive wall using the circuit model in fact differs
from the expression of the ideal wall of Liist and Martenson
only by a factor of —iwlL, /(R, —iwl,).

Finally, we perform a Fourier integral of the expression in
Eq. (25) to get P, in terms of the Fourier modes:
o EXPLIME),

P1=b.B:=me exp(!m@)= Z Mm,m'é

m, '

{33)

The matrix M is the final result of the vacuum calculation.
This matrix relates P, at the boundary to the Fourier
coefficients of £, and includes the effects of the resistive
conductors, the active feedback currents, and the geometry
of the vacuum region.

2.3, Active Feedback Matrices

Here we derive the form of the feedback matrices P and
N in Eq. (19) given the simple feedback law of Eq. (14).
As mentioned above, the form of the feedback matrices
depends on the region in which the flux observation detec-
tion loops are located. We begin with the basic Green’s
equation defining the perturbed poloidal flux at an observa-
tion point r,=(X,, Z,) nor on the plasma surface or the
wali surface. The anaiogue of Eq. (13) for this case is

4(r)) _% Y kol Glry;r,
1 dly
4 X 77(?’1 V G(r’f’» o))
dl;
»4— X—G(l';-, )(ﬁ'VT'XT]' (36)
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The magnitudes of the feedback coil currents are propor-
tional to the difference between the perturbed poloidal
fluxes at the two observation points as given in Eq. (14).
Therefore we must calculate the value of the perturbed flux
y at these points in terms of surface integrals over y and V,, »
from Eq. (36). Here we see that the form of the feedback
matrices depends upon the region in which the flux-loop
detectors are located. The value of the perturbed flux at
some point in Region I, as calculated from Eq. (36}, will
clearly depend on integrals over the surface of the plasma as
well as the inner surface of the resistive wall. On the other
hand, if the detectors are in Region 11, the value of y at the
observation points will depend on the surface integrals only
over the outer surface of the wall. In addition, however,
there will be a direct contribution from the feedback coils
themselves, as opposed to the former case, in which the
detectors in Region I “feel” the active feedback coils only
through the boundary condition that connects Region I
and Region IL

In thig section we consider only current-control feedback,
in which the actual feedback currents are proportional to
the difference of the flux-loop measurements and their time
derivatives. The currents are axisymmetric current loops
which do not obey any circuit equations. The formulation
for the case of voltage feedback, in which the circuit
equations of the active feedback coils are included in the
feedback matrices, will be presented in Section 2 of the
Appendix.

2.3.1. Case A: Detector Loops in Region I

We consider first the case in which the observation points
are located in Region I, while the active feedback coils are
in Region II. We use Eq. (36) to evaiuate the perturbed flux
at the observation points. The region is bounded by the
plasma surface and the wall surface; therefore the flux at the
observation pointr,, =(X,,, Z,,) is given by

X(ral)z _Mol,_p'x;u_Mal‘w'XW
+Gol p'vnx‘p+Gol‘w'V.nXW! (37)
where
dl,
Mol,w'%w 4 X ( VG(rws 01)) x(rw)
(38)
dl. )
Gul,w'anw 4_ X_G(rws ral)(n 'VX(rw))

ol,p

and similarly for G, ,-V,x, and M, ,.x,. Note that the
arrays G, P> M, ,,.. are row vectors, as opposed to

matrices as in the case of M,,,, G,,,, ... from the previous
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section, because we are evaluating y on the left-hand side
of Eq. (36) at only one observation point at a time, instead
of over all points of the plasma surface or wail surface
grid. The equivalent equation gives the flux y(r,,) at the
observation point r,, = (X,2, Z,2)-

We combine Eq. (37) with Eq. (14) to give the desired
currents in the active feedback coils:

L=, ((r 1) — 2(re2)) + Boli(r,) — i(r,2))
= (ot — 10 W2 (T01) — %(T02))
= (%~ 10— Moy p ko Mot X
Mo, K+ Moz 2w+ Gor - Vak,

+ Ga'l,w 'VHXW_ Go2,p 'an,p—Gol_w 'Vr:XW}' (39}

Now we include this expression in the sum over the
feedback coils in Eq. (13). Since the Green’s function in
the summation is evaluated at every grid point on the wall
surface in order to derive the matrix equation {19), our
feedback sum becomes a matrix in which the rows span the
grid points on the wall. The elements (k, /) of P, are defined
by

—M;, 1. (40)

ol,w

Phi= Y (a,,—iwf,,) Gt rm) [M!

The summation here is over all the active feedback coils; r7’
is the position of the smth feedback coil, and ¥ is the posi-
tion of the kth grid point on the wall surface. Each coil may
have a different set of gain coefficients («,,, §,,) and there
may be any number of coils. This will not affect the size of
the feedback matrix, as its row and column dimensions are
defined by the number of grid points on the wall surface or
the plasma surface. The elements (%, /) of N, P,, and N,
are given by

NE =3 (a, —ioB,) Gresem G, — G, ), (4D
PE = ~ Y (a, - iwp,) Gr; rm[ME, —ML, ], (42)
Nyt =3 (o — i0B,) G5 PGy, —Gly ) (43)

The matrix equations to be soived are now in the form of
Eqgs. (17)-(19), with the active feedback matrices nonzero.
We can now rewrite Eg. (23) to include the feedback
matrices. Now, however, the equation is a bit more com-
plicated;

Vaxp,=E~"D -y, (44)

581/104/1-16
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where

E-G,,-C-B~'.G,,
~[M,, —C-B~'-(1+M,,)]-A""N,
D=(1+M,)-C-B "M,
+[M,,—C-B~'-(14+M,,)1-A"-P,
C=G, +M,, A~ (G, —N,)
B=G,,+(1+M,.) A" (G,.—N,)
A=(1-M,, +KG,, —P,).

(43)

The additional complexity compared to the case with no
feedback in Eq. (23) arises because of the additional
matrices P and N, and also because we have new terms that
multiply y, and V,y,, which appear in the third matrix
equation {19). Previously, of course, these terms appeared
only in the first two matrix equations, Eqs. (17)}-(18).
It is clear, however, that Egs. (44}(45) reduce to
Eaqs. (23)-(24) in the limit of zero feedback.

This formulation corresponds to the configuration in
which the flux-loop detectors are inside the resistive wall
(i.e., Region I, see Fig. 1). This is the configuration used
in the calculations presented m Section 4. The feedback
matrices for a feedback system that includes components of
the poloidal magnetic field in the feedback law, Eq. (14), are
derived in the same fashion as the above formulation by
taking derivatives of Eq. (36), following Eq. (7). We will
not give this derivation here. The formuiation for the case of
the flux-loop detectors exterior to the resistive wall
{Case B) is given in the Section 1 of the Appendix. All the
cases presented here assume that the active feedback coils
are in Region II exterior to the resistive wall. The formula-
tion for the unusual case of active feedback coils inside the
resistive wall involves only a modification of the cases
presented in this paper and will not be given here,

3. NUMERICAL METHOD

1n this section we describe the method of calculating the
growth rates of the axisymmetric mode for a realistic
tokamak equilibrium with passive and active feedback. One
begins with a 2D equilibrium code {free-boundary or fixed-
boundary) that generates an equilibrium file compatible
with the PEST [26] format. In principle, any equilibrium
code can be used to generate the equilibria, but for the
calculations presented in this article using realistic tokamak
designs, the TSC [25] is used. The TSC calculates the
free-boundary MHD equilibrium and transport for realistic
tokamak configurations and can itself simulate the axi-
symmetric motion of a verticaily unstable plasma. The basic
equilibrium information (profiles and plasma surface defini-
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tton) provided by the TSC code is then used as inpit to a
2D fixed-boundary equilibrium code that calculates the
axisymmetric MHD equilibrium to the desired accuracy.

The accurately resolved equilibrium is then mapped into
a straight-magnetic-field-line stability coordinate system.
Special care must be given to equilibria with x-points, Since
the gradient of the poloidal flux vanishes at the x-point, the
Jacobian is singular and the coordinate transformation
becomes ill-defined. Therefore, defining the plasma—vacuum
equilibrium boundary too close to the separatrix surface can
adversely affect the accuracy of the mapping to stability
coordinates and thereby affect the entire calculation. It
should be noted here that the vacuum calculation depends
on the metric quantities at the plasma surface; therefore
these quantities must be well resolved on and near the sur-
face. In practice, this is verified by performing convergence
studies and verifying that the metric quantities at the plasma
edge approach unique values as the number of grid points
used in the equilibrium and mapping becomes large.

To obtain growth rates for equilibria with x-points we
must extrapolate results from a family of equilibria, each
limited by a surface successively closer to the separatrix. The
boundary surface for each equilibrium in the sequence is
labeled by the parameter ¥, which is defined as the ratio
of the poloidal flux contained within the given surface to the
poloidal flux contained within the separatrix surface, Thus,
¥ .. = 1.0 labels the separatrix surface. For equilibria whose
boundary surface is close to the separatrix (Y., =097)
one must find the correct growth rate by performing a
convergence study in the number of surfaces used in the
equilibrium calculation. The shape of the boundary surface
changes rapidly as v, approaches 1, and more equilibrium
surfaces are needed to properly resolve the equilibrium. It
is seen that the growth rates as a function of ¢, (near
W= 1) fit a straight line (sce Fig. 5), which gives us a
converged growth rate by extrapolating to i, =1. It is
more efficient to use equilibria in the range 0.94 <, <
0.96 to calculate the growth rate convergence, since it is
much easier to obtain the converged growth rate of these
individual equilibria, This is slightly less accurate than
carrying out the convergence through to ,,, =0.99, but it
is much less time consuming, and the resuiting growth rate
is found to be within 5% of the properly converged growth
rate.

The NOVA input code takes the equilibrium mapped
into stability coordinates and evaluates the matrices, such
as thaose in Eq. (6), needed by the eigenvalue solver. Then
the NOVA-W code itsell is exccuted; it performs the
vacuum region calculation, including the feedback system
and resistive conductors, and solves for the resulting eigen-
values of the linear MHD stability equations. The vacuum
calculation must be performed at every iteration when
searching for the root o of the dispersion relation, since the
boundary condition, Eq. (35), is a function of @ (see, for
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example, Eq. (22)). The calculation for the case of an ideal
vacuum region (i.e., with no wall or with an ideally conduct-
ing wall, and with no active feedback system) differs in that
the vacuum boundary condition does not depend on w
{because the system is then self-adjoint), and therefore it
needs to be calculated only once prior to the eigenvalue
search.

3.1. Calcalation of Passive Growth Rates

The NOVA code calculates an eigenvalue {growth rate)
that is normalized to the poloidal Alfvén time. Therefore to
find the actual growth rate we must inciude the normaliza-
tion factor, given by

yo = Br(0)
[0 s
Q(l ) Xmag(“ﬂpﬂ)]/Z

where B,(0) is the toroidal magnetic field strength at the
magnetic axis, g(1) is the safety factor at the plasma edge,
X mag 18 the major radius of the axis, and p, is the mass den-
sity at the magnetic axis. This normalization enters into
Eq. (22), where the correct frequency, w in 5%, is needed
for the jump condition. It also enters into the feedback
current definition when there is a derivative gain term as
in Eq. {14). For a configuration stable on the ideal MHD
time scale, the growth time is nearly proportional to the
resistivity, but influenced by the geometry of the plasma and
wall. Therefore the surface integrais over the jump condi-
tion, Eq. (22), ultimately determine the growth rate of the
instability. In this case, the accuracy of the normalization is
not important, since the normalization factor is effectively
canceled out of the calculation. However, when the wall is
distant from the plasma and the plasma is approaching ideal
instability (instability with a perfectly conducting wall), the
correct normalization is important, since the growth rate is
now affected by plasma inertia, and the mass density factor
p¢ would then be an important part of the calculation.

(40)

3.2. Active Feedback Calculations

For the case of a wali-stabilized plasma in the presence of
passive resistive conductors, we find that the solution of
interest has a purely imaginary eigenvalue that corresponds
to exponential growth of the instability on the resistive time
scale of the surrounding conductors. This root does not
exist in the absence of resistivity. With a perfectly conduct-
ing wall that stabilizes the ideal instability, there are two
roots that are purely real {oscillatory). With the addition
of resistivity these roots remain oscillatory but become
damped, and a third root, the unstable root of interest,
arises from the origin and moves along the imaginary axis.
(A good discussion of resistive wall roots is given by
Freidberg [33].) The addition of active feedback to the
stability calculation is a non-ideal effect, destroying the self-
adjointness of the stability equations. With the addition of
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feedback, therefore, we cannot ¢xpect this root to remain
purely imaginary. .

The procedure for the calculation of stability with active
feedback begins with the determination of the eigenvalues of
the system with the feedback gain set to zero, as described
in Section 3.1. One then increases the feedback gain from
zero and tracks the motion of the eigenvalue in the complex
plane. The eigenvalue is calculated using Muller’s method
(see, for example, Ref. [34]), for determining complex zeros
of analytic functions in the complex plane. Since Muller’s
method assumes that the function is a smoothly varying
function of w and that one begins with a good initial guess,
it works most reliably when we increment the gain in
relatively small steps, so that the initial guess is relatively
close to the actual solution. In practice the dispersion func-
tion D(w) (resulting from Eq. (6) after being decomposed
into poloidal harmonics and finite elements) is often a
well-behaved and smoothly varying function for this
problem, and therefore one can often make reasonably large
increments of gain and successfully find the root, even with
a poor initial guess. However, this is not always the case.

In many active feedback cases a real part to the eigen-
value develops. This corresponds to some oscillation in the
vertical motion that can be detrimental to the effectiveness
of the feedback system. Even if the imaginary part of the
eigenvalue is negative (stable), a large real (oscillatory)
piece indicates poor control. This oscillation can usually be
reduced by introducing or increasing the derivative gain 8,
in the gain law for the feedback currents:

Tn=ag(Xo1 = Xo2) + Bl — Ho2)- (47)

The oscillation is due to an “overshoot” in the plasma
motion. In a linear system, if the slope of the response curve
to a step input is large, a large overshoot will be the result
[35]. The feedback system pulls strongly, trying to bring
the vertical position to the desired value. The motion goes
beyond the desired point, and the feedback reverses to try to
bring it back. An oscillatory motion about the desired posi-
tion is the result, which may be damped (stable) or growing.
The derivative term measures the instantaneous slope and
predicts and corrects for the overshoot before it happens.
In Section 5 we shall see an example of a configuration
with large oscillations in the feedback response and
how increasing the derivative gain improves the feedback
control.

4. PASSIVE STABILIZATION RESULTS

4.1. Code Test: Analytic Model
4.1.1. Dobrott and Chang Model

In this section we introduce an analytic model derived by
Dobrott and Chang [18] that calculates growth rates of the
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vertical instability for a simplified plasma model with a
resistive wall and discrete resistive conductors surrounding
the plasma. The model uses a straight, constant-current-
density plasma equilibrium with a simple eiliptical cross
section. This plasma model was first examined with regard
to axisymmetric instability without any wall or conductors
in the vacuum region by Rutherford [8]. Dobrott and
Chang added to the model a thin resistive wall and discrete
conductors that satisfy certain geometric constraints and
derived a dispersion relation for the growth rate of the
instability that is partially stabilized by the resistive wall.
We will use the model with a thin resistive wall, but without
any additional conductors in the vacuum region; this sim-
plifies the results somewhat. We then compare results from
a numerical approximation of this simplified model to the
results predicted by the dispersion relation.

Dobrott and Chang derive a dispersion relation for the
growth rate of the m =1 mode,

Qz_éi_*_éNl(awa Q)

=0’
a® aD(o,, Q)

(48)

where 2 is the growth rate normalized to a geometrically
normalized Alfvén frequency. The numerator N, (o, 2)
and denominator D,(o,,, ) are functions of the normalized
frequency 2, the normalized wall conductivity ¢,,, and the
separation between the plasma and wall. The major and
minor radii of the ellipse are given by b and «,

When there is no wall in the region surrounding the
plasma, the normalized growth rate reduces to

1/2
om0
a\a

When the resistive wall is present one must solve Eq. (48)
to obtain the resistive growth rates. The resulting cubic
equation is a function of the wall conductivity ¢, and the
wall separation from the plasma 4, as well as the elonga-
tion ratio b/a. The three roots correspond to the resistive
wall roots [33]. We arc interested only in the purely
imaginary root.

(49)

4.1.2. Comparison of Numerical Results to Analytic Model

We approximate the constant-current-density straight
elliptical plasma equilibrium of the analytic model by
generating a numerical equilibrium of elliptical cross section
with a very large aspect ratio (4 = 100} and with a nearly
constant current density. The g-profile for this numerical
equilibrium increases from g =1.001 at the magnetic axis
to g=1.011 at the plasma edge. The resistive wail is
constructed to follow the constant-g contour of the (g, 8)
confocal-ellipsoidal coordinate system defined in the article
by Dobrott and Chang [187]. The analytically calculated
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normalized growth rate must be multiplied by the
normalized Alfvén frequency to compare with the actual
growth rate caiculated numerically.

We calculate the growth rate analytically and numerically
for several equilibria with elongations ranging from x = 1.2
to k=2.0. The numerical growth rates are calculated as
described in the previous section. We do not need to do the
convergence in the i, parameter discussed in Section 3
because we are using a fixed-boundary, non-separatrix equi-
librium. The numerical calculation presented here used 50
radial finite elements, 128 @-points around the circum-
ference, a total of 31 poloidal harmonics from —15 to + 15,
and 50 radial surfaces in the equilibrium calculation. The
analytic growth rates are calculated from the dispersion
relation (48} and renormalized as discussed above. The
results of this comparison are shown in Fig. 2a. The com-
parison is excellent for the range of elongations tested here.

We also compare the growth rates calculated by both
methods with no surrounding resistive wail. The analytic
growth rates are given by Eq. (49). The results for the case
with no resistive wall are presented in Fig. 2b for the same
range of elongations. In this case as well, we see an excellent
comparison between the numerical results and those
‘predicted by the analytic model.

4.1.3. Numerical Convergence Properties

It is important to demonstrate the convergence properties
of the code with respect to the numerical parameters used in
the calculation, We consider first the convergence properties
with respect to the total number of poloidal harmonics M
defining £, in Eq. {29).

The theory of spectral methods [36, 377 tells us that with
a Fourier series expansion one can expect the & th coefficient
of the expansion to decay faster than any inverse power of

0.0254 C.81

0.020 0.7

0.015 0.6

Y ¥ o Analytic Model
0.010 1 0.51 x NOVA-W
0.005 0.4 1
(a) {b)
o . . — 0.3+ : . ,
1.0 15 20 2.5 1.0 1.5 2.0 25
X X

FIG. 2. (a) Comparison of resistive wall growth rates y from the
NOVA-W code 1o those of the analytic model with respect to ellipticity &
of the plasma. The growth rates y are normalized here to correspond to the
analytic model. For these model equilibria we have Br=1, g.q,.=1.011,
and X, = 10. (b) Comparison of growth rates y from the NOVA-W code

with those of the analytic model with respect to ellipticity « of the plasma.
This is for the case of a plasma with no wall.
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k {exponential convergence) when the function and all its
derivatives are infinitcly smooth and periodic. There must
be enough terms in the expansion to represent all the strue-
ture of the function, but beyond that one should see an
exponential convergence, also termed “spectral accuracy.”

In a problem in which such infinite smoothness is not
present, but some sort of discontinuity exists, one no longer
sees exponential convergence, but rather one obtains a
global convergence of order 1/M°. We shall see this
behavior in the next section when we consider equilibria
with separatrices.

In the case of the simple large-aspect-ratio elliptical
equilibrium, the smoothness and periodicity constraints are
satisfied, and in fact we see a definite exponential con-
vergence in the poloidal harmonics in Fig. 3. Furthermore,
the analytic theory of Rutherford [8] tells us that only the
odd-m harmonics contribute to the unstable eigenfunction,
and in fact we see only odd-m contributions to the
eigenfunction. Furthermore, there is absolutely no change
in the eigenvalue when the calculation is performed with
M o4q harmonics or with m 4, + 1 harmonics.

4.2. Code Test: Realistic Numerical Model

In this section we perform a vertical stability calculation
for a CIT equilibrium with a surrounding resistive vacuum
vessel waill. We shall compare our results with those
obtained using the TSC [257. Vertical instability growth
rates are calculated using TSC by perturbing an up-down
symmetric equilibrium and then tracking the vertical
motion of the plasma by observing the time development of
the flux difference between pairs of up—down symmetric flux
observation points. Several pairs are typically used. These
flux differences are fit to an exponential to obtain a growth
rate.

12.004

11.85 1

¥ (x107%)
11.901

11.85 1

T T ———

5 10 15 20 25 30
exp(-M}(x10%)

11.80
0

FIG. 3. Growth rate convergence in Fourier harmonics for the
elliptical plasma x = 1.5 equilibrium. Note the exponential convergence
in the poloidal harmonics for this simple equilibrium.
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In order to obtain an accurate growth rate by this
method, one must do a convergence in the mass-enhance-
ment factor (FFAC) that is used by TSC [25] to compen-
sate for the difference between the resistive and ideal MHD
time scales. The factor FFAC corresponds to the factor by
which the Alfvén time scale is artificially slowed down in
the TSC calculation. This corresponds to increasing the
magnitude of the ion mass by a factor of FFAC?, Several
runs must be performed at different values of FFAC, and an
extrapolation to FFAC=1 is made to get a converged
growth rate. The run time of each TSC simulation is propor-
tional to 1/FFAC and, although accurate growth rates are
obtained, the method is computationally expensive. In addi-
tion, TSC advances the nonlinear MHD transport equations
in time; thus calculating the finear growth rates can be
difficult if the arbitrary initial perturbation (which is clearly
not the true eigenfunction) produces transients that are slow
to decay. One can calculate the linear growth rate only after
these transients have died away. However, if these transients
decay slowly, then the displacement may become large and
introduce new nonlinearities.

The CIT equilibrium used here is a & = 2 {at the 95 % flux
surface) diverted plasma with relatively low triangularity
(8 =0.26), which 15 in the current-ramp stage (just prior to
flat-top) of the CIT evolution. The parameters describing
the CIT equilibrium are given in Table 1. The CIT vacuum
vessel structure consists of Incomnel 625 (resistivity =
1.35x 107%Q-m) on the inboard region and Inconel 600
(7=1.08 x 10~ °Q-m) on the outboard region. The thick-
ness varies from 4 cm on the inboard region to 8.75c¢m
on the thickest outboard section. The wall definition was
entered using the same points defining the vacuum vessel
wall as in the TSC calculation. It is specified to have the
same total resistance as the sum of all the conductors that
make up the wall in the TSC calculation.

The resistive wall contour used in the NOVA-W calcula-
tion is shown in Fig. 4. The @-grid is shown connecting the
wall to the plasma surface. Note also that the direction of
increasing ® is clockwise in this coordinate system.

The NOVA-W growth rate is calculated following the

TABLE |

Equilibrium Parameters of CIT Plasma Used in the
Passive Stabilization Study

Plasma current I, 12.30 MA
Major radius Ry 2182 m

Minor radius ¢ 0.660 m
Elongation x(95%) 1.996
Triangularity $(95%) 0.258

Toroidal field B(0} 1HaT

(95 %) 4.5

B 0.0092

n{0) 1.08 3 103 m—?
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3n/2

4

FIG. 4. CIT wall contour used in the NOVA-W calculation. The
points of the &-grid are shown on the wall and plasma surfaces, and the
corresponding points are connected with line segments to show the relation
between the wall points and the points on the plasma surface. The points
designated by @ =90, n/2, 7, 3n/2 are indicated on the fgure.

numerical procedure outlined in Section 3. The CIT
equilibrium has a separatrix surface, and we must therefore
perform a convergence study as discussed in Section 3. The
convergence of the growth rate y as a function of ¢, is
shown in Fig. 5. We obtain the converged growth rate of
v=280.31s""! (r=1245ms). This compares well with the
result obtained from TSC, y=80.65s ' (r =124 ms).
Now consider the convergence of the growth rate in
poloidal harmonics for the CIT (y,,, =0.95) equilibrium.
Following the discussion in Section 4.1.2 regarding the
convergence properties of the spectral method, we do not
expect an exponential convergence in this case, because of
discontinuities in derivatives of some of the equilibrium

85,

TSC -
8O o NOVA-W Growth Rates
751 = T5C Converged

Growth Rate
q 70
y(s™
854
60
55
50
1.0 098 09 094 092
Wrat

FIG. 5. Convergence of NOVA-W growth rates with respect to .
Also shown is the converged value of the TSC calculated growth rate.
The comparisen is seen to be quite good.
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metric quantities at the plasma boundary due to the exist-
ence of an x-point. In fact, the results shown in Fig. 6a
indicate a 1/M * convergence for this equilibrium.

In Fig. 6b we see the convergence of the growth rate y
with respect to the number of radial surfaces N, needed to
resolve the equilibrium. Whereas for the ¥, = 0.96 equi-
librium we see that there are sufficient surfaces (N, > 100}
to obtain a converged growth rate, the growth rate for the
¥ =099 equilibrium keeps increasing with larger N,
Therefore one must perform a convergence in N, for the
larger i, equilibrium,

Figure 7a shows the Fourter modes of the displacement
eigenfunction £, for the CIT equilibrium used in this study.
Figure 7b shows £, for a uniform vertical rigid shift of the
CIT equilibrium. It is clear that these two forms of £, are
guite different, and therefore the true eigenfunction differs
significantly from a rigid vertical shift. In particular, the

64.5

64.0
y
835
63.0
62.5
10 15
1Mx10)
85

75 \-

) IS

{b)
55 —_—————
o° 2 4 & 8 10

1Ny {x10°9)

FIG. 6. (a) Growth rate convergence in Fourier harmonics for the
CIT (1,2 = 0.95) equilibrium. The results show a 1/M? convergence for
this equilibrium. A curve defining an exp(—M) convergence is drawn
from the converged value through the rightmost peint for comparison.
(b) Growth rate convergence in the rumber of equilibrium surfaces Nﬁ, for
the ., = 0.99 (circles) and ., = 0.96 (triangles) equilibria. Note that for
this number of surfaces (N, > 150) the ,,, = 0.96 is well converged, while
the ¥, = 0.99 equilibrium requires a far greater number of surfaces in the
equilibrium calculation to obtain convergence.
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FIG. 7. {(a)} Fourier components of the radial displacement of the
eigenfunction &, vs. ﬂ for the CIT {y,,, =0.95) equilibrium. The eigen-
function is dominated by the m= +1 components. There is also a small
contribution from the m= 43 components, which have congiderable
variation in structure as a function of r. (b} Fourier components of a
uniform rigid shift. The form of the m =2, 3 compenents is clearly much
different from that of the true eigenfunction.

m =2, 3 components arc nearly zero for the true eigenfunc-
tion, whereas there are significant m=2,3 components
needed to represent the rigid shift for this equilibrium.
Figure 8 shows the projection of the displacement & onto
the poloidal plane and indicates the motion of the unstable
plasma. We can see how it differs from a vertical shift. The
plasma displacement has a significant radial component
superimposed on the vertical motion. The consequence is
that the unstable plasma motion is toward the x-point in the
lower half-plane. It is clear from Figs. 7 and 8, therefore,
that the unstable motion of the CIT equilibrium is not

1.0 14 18 22 26 3.0 34

FIG. 8. This plot shows the instability displacement vectors for the
CIT equilibrium. Note how the displacement varies from a rigid vertical
shift. The true eigenfunction appears to be primarily vertical, but with some
inward motion (toward the symmetry axis) superimposed. The overall
effect is that the motion is in the direction of the x-point, of the “corner”
of the D-shaped plasma. This variation from the rigid vertical shift is shown
in terms of the Fourier components in Fig. 7.

o
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particularly well represented by a uniform rigid shift. The
NOVA-W code is ideally suited for examining the nonrigid
aspects of the axisymmetric instability and how these
nonrigid components can be affected by the feedback
system, We have ¢xamined the non-rigid components of the
eigenfunction and how they interact with the passive
conductors and active feedback in more detail in another
publication [38].

5. ACTIVE FEEDBACK RESULTS

The placement of the active feedback coils is clearly of
great importance to the effectiveness of a feedback system.
This has been examined in detail for the DIII-D tokamak
experiment [30, 39]. We are also interested in the impor-
tance of the proper placement of the flux-loop detector posi-
tions on the effectiveness of the feedback system (for a given
configuration of feedback coils) in stabilizing the plasma.
Therefore, we perform a study in which the flux-ioop obser-
vation pair, which is used to measure the plasma’s position,
is moved to different locations on the inside of the vacuum
vessel wail. The plasma equilibrium and active feedback
coils do not change in this study. We use the CIT equi-
librium and vacuum vessel introduced in Section 4.2.
Figure 9 shows the CIT plasma boundary, resistive wall,
active coils, and the four locations for the flux-loop observa-
tion pairs used in this study, We choose this equilibrium as
an example for these calculations because it is identical to
the equilibrium used in a similar study using TSC. While it
is not close to the ideal limit and, therefore, it is not overly

——————— Active Feedback coil

CIT P13m> vVacuum vessel wall

-——— Active Feedback coil

FIG. 9. CIT plasma boundary (i, =099),
locations of the flux-loop pairs.

resistive wall, and
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difficult to stabilize, it is an interesting and illustrative
example.

Figure 10 shows the results of the active feedback system
using flux measurements from the four flux-loop pair posi-
tions shown in Fig. 9. The growth rate is plotted against
proportional gain for the positions and values of derivative
gain as labeled. The curve labeled (a) shows the y vs. a,
curve for Mux-loop pair no. 1 located at (X,, Z,)=
(1.415, £0.65). The derivative gain is f,/a, = 0.01s. This is
clearly the most effective flux-loop pair considered here.
Indeed, it corresponds to the most effective region for
active feedback flux measurements in the TSC calculations
performed for the same configuration [28].

Magnetic measurements (flux and magnetic figld measure-
ments) are used in experiments to determine plasma posi-
tion on a fast time scale [30, 40]. The NOVA-W code
allows a feedback system with an arbitrary number and
configuration of flux-loops and poloidal magnetic field
measurements in the feedback law. However, in our
example, we use the most straightforward case of a simple
difference of the perturbed flux between two observatien
points, or flux loops, symmetric about the midplane as
a measure of the vertical position of the plasma. The
perturbed poloidal flux is the difference between the
total poloidal fiux of the displaced equilibrium and the
equilibrium poloidal flux, which is symmetric about the
midplane for symmetric plasmas and conductor configura-
tions. Therefore, the perturbed flux is essentially the
asymmetric flux with respect to the midplane. This is com-

¥
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FIG. 10. Growth rates vs gain for various flux-loop locations on CIT.
The flux-loop locations refer to the labels shown in Fig. 9: (a) squares, flux-
loop position no. 1! B, /a, =0.015; {b) circles, flux-loop position no. 2:
Befe,=00Ls; (c) triangles, flux-loop position no.2: fF /e, =002s;
{d) crosses, flux-loop position no. 3: f,/x, = 0.02 5; {e} diamonds, flux-laop
position no. 4: /o, =001 s,
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posed of three parts: the part due to the displaced plasma,
the component from the currents in the feedback coils, and
the part from the eddy currents in the passive conductors.
An effective location is one that is sensitive to the perturbed
flux contribution from the plasma with respect to a vertical
displacement. Therefore 2 plot of perturbed flux contours in
the vacuum region is a useful method for observing how
effective a particular pair of flux loops is in determining
plasma vertical position. From that we see how effective a
pair of flux loops would be as part of the overall feedback
system.

Figure 11 shows the perturbed flux contours in the
vacuum region for the eigenfunction of the active feedback
stabilization of the CIT equilibrium, with the normalized
proportional gain o, = 0.5 (the gain is normalized to units of
2nfu, amps/Weber-radians), using flux measurements at
flux-loop position no. 1. One can see that these flux loops lie
adjacent to perturbed plasma flux contours of relatively
high flux. Figure 11 shows that the region including flux-
loop position no. 1 and extending slightly higher along the
inboard wall has the highest perturbed flux values and is
therefore probably the best region in which to place the flux
loops to detect vertical motion. The perturbed flux along the
wall then decreases in magnitude as one moves the flux

FIG. 11. Perturbed flux contours in the vacuum region of the CIT
plasma (., =0.95) for active feedback in which the active feedback system
uses flux measurements from flux-loop pair no. 1. The flux loops of pair
no. 1 are represented by “x” symbols, which are indicated by the arrows.
The zero-flux contour is shown as a dashed line. The flux contours increase
in magnitude as one moves away from the zero-flux contour. The flux loops
in this case lic on a contour of large plasma flux and are far from the

zero-flux contour.
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loops further from the midplane and toward the outboard
side on the wall. One would expect, therefore, that by
placing the flux loops at position ne. 2 (see Fig. 9), the
performance would be degraded somewhat, the reason
being that the flux loops are now in a region with much
smaller perturbed flux for a given vertical displacement.
Therefore, the flux loops are less sensitive to the vertical
motion of the plasma. These icops lie just outside the outer-
most (lowest magnitude) plasma flux contour, although
they are still far from the zero-contour.

The curves marked {b) and {c) in Fig. 10 show the results
for active feedback at flux-loop position no. 2, (X,, Z,)=
(1.51, +1.50). Figure 12 shows these two curves apart from
the other curves. Figure 12a shows y vs. 2., and Fig. 12b
shows y vs. the frequency of oscillation |, |. It is seen that
the case with lower derivative gain {(§,/x, = 0.01 s} is always
unstabie. The growth rate decreases with increasing gain
until a turning point is reached at &, = 1.0, at which point an
increase in the gain no longer reduces the growth rate, but
actually increases the growth rate at still higher gain. It is
seen from Fig. 12 that at this turning point the value of e, |
increases rapidly from zero with increasing feedback gain.
There is, therefore, an overshoot that begins approximately

404 o
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FIG. 12, {a) Growth rate y vs. proportional gain «, for the two cases
using flux-loops at position no. 2. The circles correspond to the case with
derivative gain f /o, =001 s. The triangles correspond to f./a, =0.02s.
{b) Growth rate 7 vs oscillalion frequency les,| for the two cases with
flux-loop pair no. 2. Doubling the derivative gain to ff, /o, = 0.02 s virtually
eliminates the oscillation and stabilizes the plasma.
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at the gain value at which there is a turning point in y. In this
case, once the gain value reaches a certain threshold, the
feedback system drives this overshoot instead of reducing
the growth rate. A further increase in gain increases the
oscillation frequency caused by the overshoot and actually
has the effect of increasing the growth rate as well.

The curve (c) shows the resuits of doubling the derivative
gain to fi ju,=0.02s. In this case we see that the growth
rate continues to decrease smoothly and becomes stable.
This case, with larger derivative gain, shows virtually no
oscillation until well after the mode has been completely sta-
bilized. The last point shows a smali oscillation frequency
with a large damping rate (negative growth rate) for the
displacement. This is a good example of how increasing
the derivative gain will reduce the oscillations and improve
the overall performance of the feedback system. Lister
et al. [30] showed the stability boundaries in gain space
(B, vs. ) for DINI-D. Their results show how the oscilla-
tions are reduced with increasing derivative gain, but that
increasing the derivative gain too much has a destabilizing
effect. The reduction in the efficacy of the feedback system as
the flux loops are moved to a less sensitive position higher
on the inboard wall from position no. 1 to position no. 2
agrees well with TSC results [28].

Curve (d) in Fig. 10 shows the results for active feedback
with measurements taken at flux-loop pesition no. 3,
(X,. Z,)=1{20,+1.7). It can be seen that in this case the
plasma is far from being stabilized, regardiess of the value of
the gain. There is only a small decrease in the growth rate
with increasing gain. The curve shown is for §, /o, =0.02s
derivative gain, but the curve is nearly identical for
B./o, =0.05s. In fact, the oscillation frequency |w, | for both
cases is nearly zero. Therefore the problem in stabilizing the
mode is not due to overshoot and oscillation, and increased
derivative gain will not help. This agrees with results from
TSC simulations [28] in which no gain combinations
g, B, were found that could come anywhere close to
stabilizing the mode. Using this flux-loop location is
apparently completely ineffective.

Figure 13 demonstrates the ineffectiveness of this flux-
loep position in providing adequate feedback stabilization,
The figure shows the perturbed flux contours for the active
feedback using this pair of flux loops for «, = t. It shows the
contours of zero flux lying very close to the flux loops used
for position measurement. The value of perturbed poioidal
flux at these flux loops is very nearly zero. As the feedback
gain is increased, the null contours move even closer to the
flux loops, while the growth rate is only slightly reduced.
Therefore these flux-loop locations are very insensitive to
changes in the vertical position during active feedback.

It is the interaction of the perturbed plasma flux with the
flux from the active feedback coils and the eddy currents in
the passive conductors that creates this region of nearly zero
flux. This effect demonstrates the importance of careful
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FIG. 13. Perturbed flux contours in the vacuum region for active feed-
back in which the active feedback system uses flux measurements from flux-
loop pair no. 3. The flux loops of pair no. 3 are represented by “x" symbals,
which are indicated by the arrows. The zero-flux contour is shown as a
dashed line. The flux contours increase in magnitude as one moves away
from the zero-flux contour, The flux loops in this case lie very close to the
zero-flux contour.

placement of the flux loops taking into account the inter-
action of the active feedback system with the plasma fiux
and the passive conductors.

The inability of this flux-loop pair to stabilize the plasma
is the result of the geometry of this particular configuration;
it is not due to any significant deformation of the plasma.
The important effect of the deformation of the plasma eigen-
function on the ability of a feedback system to stabilhize the
plasma has been examined in detail elsewhere [38].

If the active coil and passive conductor contributions to
¥ could be subtracted so that only the plasma contribution
is measured, then any pair of up-down symmetric flux loops
could effectively measure the vertical displacement and
therefore control the plasma. The effects of the active feed-
back coils could be subtracted from the signal by redefining
the perturbed flux measurement to be

zp=XO“ZM0,in1 (50)

where the sum is over the active feedback coils, and M,
represents the coupling between the flux loop and the active
feedback coil. The effects of the eddy currents in the vacuum
vessel wall could, in principle, also be subtracted out.
However, this would require a detailed knowledge of the
eddy current distribution in the wall for the given plasma
displacement and active feedback response. This could be
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done in our calculation, but it might prove difficult in an
experiment. Subtracting out only the active feedback coil
contribution may improve the sensitivity of the flux loops,
but it is not clear how much this would be improved
without accounting for the eddy current effects—especially
when the flux loops are inside the vacuum vessel wall.

Finaily, curve (e) of Fig. 10 shows the results of using the
flux loops at position no. 4 of Fig. 9, (X,, Z,) = (2.9, +0.6).
This piaces the flux loops on the outboard side of the
plasma at a relative position (with respect to the plasma)
similar to that of the flux loops at position no. 1, but on the
opposite side of the plasma. It is seen that the plasma can be
stabilized using flux measurements at these points, although
it takes a higher gain «, than when using flux loops at posi-
tion no. 1. Therefore, the position of this flux-loop pair is
less sensitive than pair no. 1, but is still sensitive enough to
successfully control the plasma. There is no need to increase
the derivative gain beyond the 1% used in the first case.

Even though the flux {oops at position no. 4 are almost as
close to the active feedback coils as the flux loops at position
no. 3, the geometry is such that the zero-flux contour does
not closely approach the flux loops at position no. 4, as can
be seen in Figs. 11 and 13. These loops lie within a region
where the perturbed flux is large enough to provide a
flux difference measurement that can stabilize the plasma.
However, the region in which these flux loops lie has some-
what lower perturbed flux than that of flux-loop pair no. 1,
Thus we would expect the feedback gain necessary for
stabilization to be somewhat higher for flux-loop pair no, 4
than for pair no, 1; this is seen in Fig. 10. The ability of the
active feedback to stabilize the plasma using these flux loops
aiso agrees with TSC results [28].

6. DISCUSSION AND SUMMARY

We have developed a linear MHD stability code to
examine the feedback stabilization of deformable tokamak
plasmas by passive resistive conductors and active feedback
currents in the vacuum region surrounding the plasma. This
code, NOVA-W, is a modification of the linear, ideal MHD
stability code NOVA,

The vacuum calculation has been modified to a formula-
tion based on perturbed poloidal flux. This allows the
representation of active feedback currents in the vacuum
region, and the effects of eddy currents in the resistive wall
can be represented by a jump condition in the normal
derivative of the perturbed flux in accordance with a thin-
wall approximation. The flux formulation also makes it
straightforward to use magnetic measurements to represent
the vertical displacement in agreement with experimental
methods. A Green’s function formulation relates the
perturbed flux and the normal derivative of the flux on the
plasma and resistive wall surfaces through a series of surface
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integral equations. The boundary condition at the plasma—
vacuum interface relates the perturbed pressure at the
surface to the normal derivative of the flux. The perturbed
flux is in turn related to the radial component of the
instability displacement. This provides the mnecessary
boundary condition for the solution of the linear MHD
stability equations.

The code has been tested in the case of passive stabiliza-
tion against an analytic model in the limit of an infinite
aspect ratio for a simple elliptical plasma. The comparison
is excellent. Another comparison is performed for a realistic
tokamak configuration using the TSC. The comparison to
the TSC results is excellent. The improved performance of
NOVA-W over TSC allows one to obtain converged results
using up to 10-20 times less computational time.

The NOVA-W code has been applied to the study of
active feedback of the CIT tokamak design. The study
focused on the comparison of effectiveness of the feedback
system with regard to flux-loop location within the vacuum
vessel. The results compare favorably to a similar study pre-
viously undertaken using the TSC code. It was seen that the
sensitivity of the flux measurements varied with respect to
the location at various points along the inside wall of the
vacuum vessel. This greatly changes the efficacy of the
feedback system. At some locations {e.g., flux loop pair
no. 2) with an apparently reduced sensitivity of the flux
measurements to plasma position, an increase in derivative
gain can improve performance. At another location (flux
loop pair no. 3} it was found that no combination of gains
could stabilize the plasma; whereas other locations (such as
flux loop pairs no. I and no. 4) allow effective feedback
stabilization of the plasma.

APPENDIX A. ACTIVE FEEDBACK
MATRIX DERIVATIONS

1. Case B: Detector Loops in Region I1

In this case the observation points are outside the
resistive wall. This region is bounded by only one surface
(and extends to infinity). However, the feedback coil
currents are in this region, so they make a direct contribu-
tion to the value of the perturbed flux at the observation
points as well. Using the definition for the perturbed flux at
a flux-loop position, Eq. (36), and the definition for the
feedback currents, Eq. (14), we obtain for the perturbed flux
at the observation pointsr,, and r,:

X(rol) =fl[_Mol,w XW+ Gal.w V:xw_ Slk(ra2)] (Al]

x(rml) =f2|: _MDZ,W “Kw + Ga],w 'V:XW + S2x(r01)]’ (AZ)
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where M, ., G, .., and so on are defined as before and
where

8= (o, iwp,) G(r,,;17);
) (A3)
SZ =z (am - [mﬁm) G(rnl; r:n]

m

1 1

“;a‘_“_—sl—); foms o

Ji (2+5,)

(Ad)

To solve for y(r,,) we substitute Eq. (A1) into Eq. (A2) to
find
o)1+ 8,8, 11 £,
=f2{ ‘_MOZ,W X: + Ga2‘w VIXW
+Slfl[d_Mal,w'x;: +G01.w'vn+x»v}}9 (AS)

and likewise for y(r,,) we obtain

x(r, ) [1+ 8,8,/ 151
=J(.l{_-ndol,w';‘f;::L +Gol,w'V:XW
=8 My kw +Gosw-Vizu1)

(A6)

These expressions are now substituted into Eq. (14) to give
the expression defining the active feedback currents [,

1= ps M

+f2(1 +flS1) Molw'Xw
+ {1 —=1£8,) Ggl,w‘v:Xw

_f2(1+f1S1)Ga2.w'V;‘:Xw}s (A7)

where

F=1+45,8f/ (AB)

Again we substitute this expression into the sum over the
feedback coils in Eq. (36) to get our feedback equations.
This defines the feedback matrices, and thus the elements
{k, ) of P, are defined by

1 —K

ded _
Poi=

(0, —iwf,,) Grk:r7)

m

x[—=fi(l—f;85) Mi)l,w + (1 +1,8)) MLZ,W]!
(A9}

237

and the elements (&, /) of N, are given by

1
NE/ = 2T (@ — i) Gless ¥7)

x [f1(1 = £2S,) Gi,l,w“fz(l +f151) Giz_w]s
{A10)

where K is the jump coefficient for the resistive wall as
defined in Eq. (22). In this case P, and N, are identically
zero because the plasma surface is in Region I, and there-
fore the plasma affects the perturbed flux at the observation
points in Region IT only through the boundary condition at
the resistive wall.

The matrix equations (17)~(19) are again solved for V, x,,
in terms of x,. This case is a little more straightforward than
the case presented in Section 2.3, because P, and N, are
both identically zero. Therefore Eqs. (44)-(45) reduce to

an,u:Eil'D'xPa (Arl]
where
E=G,-C-B'.G,,
D=(1+M,,)-C.-B~'-M,,
C=(;,uw+Ivl‘pw't&_l '(wa_Nw) (A12)

B= wa+ (1 +Mww) 'A_l . (wa‘
A=(1-M,.+KG, . —P,).

N..)

2. Feedback System Circuit Equations

In the previous cases we considered only the case of a
“perfect” feedback system in which the feedback currents
are a function only of the flux-loop measurements. In a
realistic control system, of course, one would have the active
feedback coils driven by a power supply, which is in turn
controlled by the flux-loop measurements. The true
dynamics of the current trajectories in the active feedback
coils depend on the characteristics of the active feedback
circuits. The currents are driven in the active feedback coils
on the characteristic L/R time of the circuit, and there is
coupling between the active feedback coils, between the
coils and the vacuum vessel wall, and indeed between the
coils and the plasma itself.

In order to make our model more realistic, we include the
proper circuit equations in the feedback derivations and
therefore in the feedback matrices. This has the additional
benefit of accounting for the additional passive stabilization
of discrete conducting elements in the vacuum region that
are not part of the resistive wall. Therefore we will be able
to include the passive effects of the active coils themselves or
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whatever other conducting elements lie outside the vacuum
vessel wall. We note that our model does not include
power-supply characteristics such as a voltage limit or time-
delayed response, however, as these do not fit within the
framework of the simple linear model,

We define the voltage applied to a feedback coil to be
some linear combination of the perturbed fluxes at
prescribed observation points. We define the voltage to be
proportional to the flux difference (and corresponding time
derivative) between two observation points symmetric
about the midplane. This is also analogous to the definition
of the desired current for the ideal feedback-current model
of Section 2.3. The feedback coil voltages are thus defined as
r,2)}+ Bilkr, ) —

Vi=a&(x(r,,)—x xr.2)). (Al3)

The new gain coefficient & and § differ from the o and §
of Eq. (14) and must satisfy the units of this equation. One
simple definition would be to specify &, and f, as simply the
corresponding coil resistance r, multlphed by the current
gain coefficients a, and §,.

We are, of course, free to define V; in any manner we
choose. A more efficient feedback law is to define

=V =1, {Al4)

where 17" is the feedback current we “want” in the coil,
defined by Eq. (14), [, is the actual coil current at that
moment in time and V is the voltage gain coefficient.

We therefore have a circuit equation for the ith coil:

dl, dr,
I+ L — M, L
rid + fdt+_};i g,

ai, d
dt dt

ZMM (M; ,1,)= (A15)

This accounts for the resistance of the coil r;, its self-
inductance L;, and its mutual inductance due to coupling
with the other coils M, ;, the resistive wall M, ,,, and the
plasma M, ,. The inductance terms can all be expressed in
terms of the perturbed poloidal flux at the ith coil:

d I
A= LG T MY
+Z M,._u%+% (M, ,1,). (Al6)
Therefore the circuit equation (A15) becomes
rid,= V,-—%x(ri)= V. + fwy(rt). (A17)
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We make use of the equation specifying the flux at an
“observation point™ in the vacuum region (this observation
point is simply the position of the coil in Eq. (A16)), and we
use the definition for V, from Eq. (A13). Then the circuit
equation for the ith coil is

(ri—ioL) I~ o ¥, Glristl) I,
2 JF#EL
= (&~ iwf)(xir,,) = x(r.2))
InTIN dl,
47T i X ( VG(rW’ al)) x(rw)
iwig dlw . ~
Tt O V) (AI8)
where the mutual inductance between two coils, M, ;, Is just

given by 1 u,G(rl;r!) and where the self-inductance of a
square coil of dimension Ax located at r’ = (X,, Z,) is given

by [41]

o552 o (8]

(A19)

When we sum this over all the coils we can rewrite the
equations in a matrix form that emulates Ohm’s circuit law,

R, I,=V,

oL {A20)
where R is the impedance matrix, 1 is the array of feedback
coil currents, and V is the array of “voltage” expressions.
The latter contains all the Green’s function surface integrals
that come from Eq. (A18). The elements of the matrix R are
given by

R, =(r,—

LS ile} 5i,j 260#06( c’ c)(l _511) (Azl)

where &, is the Kronecker delta. The elements of V are
defined by the right-hand side of Eq. (A18). The expressions
derived in the previous section for the flux-loop measure-
ments for a pair of detectors either inside or outside the
resistive wall may be substituted into the expression for
the elements V,. In order to determine the true feedback
currents to be included in Eq. (36) so that we can derive the
form of the feedback matrices, we invert the matrix R in
Eq. (A20):

(A22)
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Using the results for the flux-ioop detectors located in
Region 1, we derive the active feedback matrices with the
circuit equations included, so that the elements (k, /) of P,
P,..N,, and N, arc defined by

P/= —LGEL TR,
x (;z, —iwf)IM}, ,— M), 1. (A23)
Pei= —ZG(rﬁ.;ri) Z (R,
><( —iwf )M, ,—M, ]
—iop, Y, G ey Y (R™Y), , [M), - KG! ],
’ j (A24)
N“=ZG(rﬁ;ri)Z(R“h;
—iof)IG, ,— G, I (A25)
N&/ = ZG T C)Z R},
x(a—zwﬁ}[Gm Gl
(A26)

+iwﬂoz G(r;r!) Z (R_l)i,j Gi,w‘
J i

Equivalent forms for the feedback matrices with the flux-
loop detectors in Region 11 arc easily derived. The elements
(k, [} of P, are given by

p';f=“;FK)>; Girl e ¥ (R, (@, iof)

[ fl{l—fZSZ 0[u+f2 1+fl a2u]
_iw)uﬂzG(rt’;r{:)Z{R—l)f.j [Mi w_KGﬁ.w],
J £
(A27)
and the elements {k, /) of N, are given by
N’”——ZG nir) X R, (8 —iof,)
[fl{l_fZSZ olw f2(1+f1 o2w]

(A2R)

+ iwpy Z G(rl; 1) Z (Rél)i‘j Gi,w
i I

The quantities f1, 15, 8, §,, Fand the jump coefficient K
are defined above. The matrices M, ,, and G, ,, are defined
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in the same fashion as A, , and G, ,, except that the
observation point is now the ith feedback coil:

dal,
T = A29
Mo 2w = =32$ 55 0-VGir ) 20 (A29)
dl, Ca
G V akw= —G(r“,r;:)(n Vx(rw)) (A30)
4 w X,
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